X
x جهت سفارش تبليغ در سایت ثامن بلاگ کليک کنيد



مجموعه اشعار و نوشته های غمگین من - آزمون ساكن بودن از طريق نمودار همبستگي و ريشه واحد

مجموعه اشعار و نوشته های غمگین من - آزمون ساكن بودن از طريق نمودار همبستگي و ريشه واحد

موضوعات
Category

محبوب ترین مطالب
Most visited Postss

ارشیو وبلاک
Archived blog

لينك هاي روزانه
Daily Links

کدهای اختصاصی
Code

کدهای اختصاصی
Site Statistics

» بازديد امروز : 3
» بازديد ديروز : 0
» افراد آنلاين : 1
» بازديد ماه : 6
» بازديد سال : 51
» بازديد کل : 109
» اعضا : 0
» مطالب : 19

آزمون ساكن بودن از طريق نمودار همبستگي و ريشه واحد


تاریخ انتشار پست : 1396/11/28 بازدید : 2

آزمون ساكن بودن از طريق نمودار همبستگي و ريشه واحد[1]

يك آزمون ساده براي ساكن بودن براساس تابع خود همبستگي (ACF) مي باشد. (ACF) در وقفه k با  نشان داده مي شود و بصورت زير تعريف مي گردد.

از آنجاييكه كوواريانس و واريانس، هر دو با واحدهاي يكساني اندازه گيري مي‌شوند،  يك عدد بدون واحد يا خالص است.  به مانند ديگر ضرايب همبستگي، بين (1-) و (1+) قرار دارد. اگر  را در مقابل K (وقفه ها) رسم نماييم، نمودار بدست آمده، نمودار همبستگي جامعه ناميده مي شود. از آنجايي كه عملاً تنها يك تحقق واقعي (يعني يك نمونه) از يك فرآيند تصادفي را داريم، بنابراين تنها مي‌توانيم تابع خود همبستگي نمونه،  را بدست آوريم. براي محاسبه اين تابع مي‌بايست ابتدا كوواريانس نمونه در وقفه K و سپس واريانس نمونه را محاسبه نماييم.

كه همانند نسبت كوواريانس نمونه به واريانس نمونه است. نمودار  در مقابل K نمودار همبستگي نمونه ناميده مي شود. در عمل وقتي  مربوط به جامعه را ندايم و تنها  را براساس مصداق خاصي از فرآيند تصادفي در اختيار داريم بايد به آزمون فرضيه متوسل شويم تا بفهميم كه  صفر است يا خير. بارتلت (1949)[2] نشان داده است كه اگر يك سري زماني كاملاً تصادفي يعني نوفه سفيد باشد، ضرايب خود همبستگي نمونه تقريباً داراي توزيع نرمال با ميانگين صفر و واريانس  مي باشد كه در آن n حجم نمونه است. براين اساس مي توان يك فاصله اطمينان، در سطح 95 درصد ساخت. بدين ترتيب اگر  تخميني در اين فاصله قرار گيرد، فرضيه(=0) را نمي توان رد كرد. اما اگر  تخميني خارج از اين فاصله اعتماد قرار گيرد مي توان صفر بودن  را رد كرد.

آزمون ديگري نيز بصورت گسترده براي بررسي ايستايي سريهاي زماني بكار مي‌رود كه به آزمون ريشه واحد معروف است. براي فهم اين آزمون مدل زير را در نظر بگيريد[3]:

Yt = Yt-1+Ut

Ut جمله خطاي تصادفي است كه فرض مي شود بوسيله يك فرآيند تصادفي مستقل (White Noise) بوجود آمده است. (يعني داراي ميانگين صفر، واريانس ثابت  و غير همبسته مي باشد).

خواننده مي تواند تشخيص دهد كه معادله فوق، يك معادلخ خود رگرسيون مرتبه اول يا AR(1) مي باشد. در اين معادله مقدار Y در زمان t بر روي مقدار آن در زمان (t-1) رگرس شده است. حال اگر ضريب Yt-1 برابر يك شود مواجه با مساله ريشه واحد مي شويم. يعني اين امر بيانگر وضعيت غير ايستايي سري زماني Yt مي باشد. بنابراين اگر رگرسيون زير را اجرا كنيم:

و تشخيص دهيم كه  است، گفته مي شود متغير Yt داراي يك ريشه واحد است. در اقتصاد سنجي سريهاي زماني، سري زماني كه داراي يك ريشه واحد باشد، نمونه‌اي از يك سري زماني غير ايستا است.

معادله فوق غالباً به شكل ديگري نيز نشان داده مي شود:

كه در آن ،  اپراتور تفاضل مرتبه اول مي باشد. توجه كنيد كه  است. اما اكنون فرضيه صفر ما عبارت است از  كه اگر  برابر با صفر باشد مي توانيم معادله فوق را بصورت زير بنويسيم:

اين معادله بيانگر آن است كه تفاضل اول سري زماني Yt ساكن مي باشد. زيرا بنا به فرض Ut يك جمله اختلال سفيد (اختلال خالص) مي باشد.

اگر از يك سري زماني يك مرتبه تفاضل گرفته شود (تفاضل مرتبه اول) و اين سري تفاضل گرفته شده ساكن باشد، آنگاه سري زماني اصلي (انباشته از مرتبه اول[4]) مي باشد و به صورت I(1) نشان داده مي شود.

به طور كلي اگر از يك سري زماني d مرتبه تفاضل گرفته شود، انباشته از مرتبه d يا I(d) مي باشد. پس هرگاه يك سري زماني انباشته از مرتبه يك يا بالاتر باشد سري زماني غير ايستا خواهد بود. بطور متعارف اگر d=0 باشد، در نتيجه فرآيند I(0) نشان دهنده يك فرآيند ساكن مي باشد. به همين علت نيز يك فرآيند ساكن بصورت I(0) مورد استفاده قرار مي گيرد.

براي وجود ريشه واحد تحت فرضيه  از آمار  يا (tau)[5] استفاده مي‌كنيم، مقادير بحراني اين آماره به روش شبيه سازي مونت كارلو توسط ديكي و فولر بصورت جداول آماري محاسبه شده است. (متاسفانه آماره t ارائه شده حتي در نمونه‌هاي بزرگ از توزيع t استيودنت پيروي نمي كند و در نتيجه نمي توان از كميت بحراني t براي انجام آزمون استفاده كرد.)

در ادبيات اقتصادسنجي آزمون  يا (tau)، به آزمون ديكي- فولر (DF) مشهور مي‌باشد. بايد توجه داشت كه اگر فرضيه صفر  رد شود، سري زماني ساكن بوده و مي توان از تابع آزمون t استيودنت استفاده نمود.

اگر قدر مطلق آماره محاسباتي (tau)، بزرگتر از قدر مطلق مقادير بحراني (DF) يا مك كينان باشد، آنگاه فرضيه مبتني بر ساكن بودن سري زماني را رد نمي كنيم از طرف ديگر اگر مقدار قدر مطلق محاسباتي كمتر از مقدار بحراني باشد، سري زماني غير ايستا خواهد بود.

به دلايل عملي و نظري، آزمون ديكي- فولر براي رگرسيون هايي بكار گرفته مي‌شود كه به فرم زير باشند:

معادله بدون عرض از مبدا و بدون روند.                  

معادله با عرض از مبدا.                

معادله با عرض از مبدا و باروند.          

اگر جمله خطاي Ut خود همبسته باشد، (معادله با عرض از مبدا و با روند) را مي‌توان بصورت زير تعديل نمود:

اينكه چه تعداد جملات تفاضلي با وقفه مي بايست در مدل لحاظ شود وابسته به اين است كه تا چه تعداد ورود اين جملات، سبب استقلال سريالي جمله خطا مي‌گردد.

هنگاميكه از آزمون (DF) براي مدل فوق استفاده مي شود، از آن به عنوان آزمون ديكي- فولر تعميم يافته (ADF) ياد مي شود. تابع آزمون (ADF) داراي توزيعي مجانبي همانند تابع آزمون (DF) بوده و از مقادير بحراني يكساني، براي آنها مي توان استفاده كرد.



[1]  Correlogram and Unit root test of stationary

[2]  Bartlett

[3]  مباني اقتصاد سنجي- دامودار گجراتي- موسسه انتشارات دانشگاه تهران- بهار 1378- چاپ دوم با تجديد نظر.

[4]  Intergrated of order one

[5]  (tau) statistic

دسته :
برچست ها :
نظرات
نظرات مرتبط با این پست
نام :
ایمیل :
وب سايت :
کد تاييد :        
متن دیدگاه :

تمامی حقوق برای نویسنده محفوظ میباشد